Thursday, January 5, 2017

Vulcanization kinetics and mechanical properties of acrylonitrile butadiene rubber (NBR) composite

Kinetika vulkanisasi dan sifat mekanis komposit acrylonitrile butadiene rubber (NBR)

Arum Yuniari, Ike Setyorini, Hesty Eka Mayasari


Abstract


The aim of this research was to study the effect of vulcanization temperature on mechanical properties and curing kinetics of NBR composites. The composites were formulated by using two types of carbon black i.e. N-330 and N-774. The curing kinetics was determined using Moving Die Rheometer. The network formation processes were related to torque and time. The vulcanizates were obtained by compression molding in a hydraulic press at 150°C and 160°C. The mechanical properties observed include tensile strength, elongation at break, hardness, and tear strength. Kinetics studies were approached by Arrhenius equation and the reaction mechanism was assumed following first order reaction. The results showed that curing kinetics can be approached by the equation from the rheometer data. The surface area of carbon black strongly influenced the mechanical properties and rate constant (k) of NBR composite. Carbon black N-330 can be used as a desirable reinforcing filler which gave a higher mechanical properties than the other type of carbon black.
Keywords: curing kinetics, NBR, temperature, mechanics.

Full Text:

PDF

References


Ahmed, K., Nizami, S. S., Raza, N. Z., & Shirin, K. (2012). Cure characteristics, mechanical and swelling properties of marble sludge filled EPDM modified chloroprene rubber blends. Advances in Materials Physics and Chemistry, 2, 90-97. http://dx.doi.org/10.4236/ampc.2012.22016
Akhlaghi, S., Hedenqvist, M. S., Conde Brana, M. T., Bellander, M., & Gedde, U. W. (2015). Deterioration of acrylonitrile butadiene rubber in rapeseed biodiesel. Polymer Degradation and Stability, 111, 211-222. http://dx.doi.org/10.1016/j.polymdegradstab.2014.11.012
Allegra, G., Raos, G., & Vacatello, M. (2008). Theories and simulations of polymer-based nanocomposites: From chain statistics to reinforcement. Progress in Polymer Science, 33(7), 683-731. http://dx.doi.org/10.1016/j.progpolymsci.2008.02.003
Chung, J. W., Han, S. J., & Kwak, S. (2008). Dynamic viscoelastic behavior and molecular mobility of acrylonitrile–butadiene copolymer nanocomposites with various organoclay loadings. Composites Science and Technology, 68(6), 1555-1561. http://dx.doi.org/10.1016/j.compscitech.2007.10.025
Fathurrohman, M. I., Maspanger, D. R., & Sutrisno, S. (2015). Vulcanization kinetics and mechanical properties of ethylene propylene diene monomer thermal insulation. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2), 104-110. http://dx.doi.org/10.9767/bcrec.10.2.6682.104-110
Gerspacher, M. (2009). Advanced CB characterizations to better understand polymer-filler interaction: A critical survey. Kautschuk Gummi Kunststoffe, 62(5), 233-239.
Hasan, A., Rochmadi, Sulistyo, H., & Honggokusumo, S. (2012). The effect of rubber mixing process on the curing characteristics of natural rubber. Makara Journal of Technology, 16(2), 109-115. http://dx.doi.org/10.7454/mst.v16i2.1508
Hasan, A., Rochmadi, Sulistyo, H., & Honggokusumo, S. (2013). Vulcanization kinetics of natural rubber based on free sulfur determination. Indonesian Journal of Chemistry, 13(1), 21-27.
Indrajati, I. N., Dewi, I. R., & Irwanto, D. (2012). Pengaruh variasi rasio HAF/SRF terhadap sifat vulkanisat NBR. Majalah Kulit, Karet, dan Plastik. 28(2), 59-68. http://dx.doi.org/10.20543/mkkp.v28i2.106
Jovanović, V., Budinski-Simendić, J., Samarzija-Jovanović, S., Marković, G., & Marinović-Cincović, M. (2009). The influence of carbon black on curing kinetics and thermal aging of acrylonitrile-butadiene rubber. Chemical Industry & Chemical Engineering Quarterly, 15(4), 283-289. http://dx.doi.org/10.2298/CICEQ0904283J
Jovanović, V., Samarzija-Jovanović, S., Budinski-Simendić, J., Marković, G., & Marinović-Cincović, M. (2013). Composites based on carbon black reinforced NBR/EPDM rubber blends. Composites Part B: Engineering, 45(1), 333-340. http://dx.doi.org/10.1016/j.compositesb.2012.05.020
Karaagac, B., Inal, M., & Deniz, V. (2009). Artificial neural network approach for predicting optimum cure time of rubber compounds. Materials & Design, 30(5), 1685-1690. http://dx.doi.org/10.1016/j.matdes.2008.07.010
Li, Z. H., Zhang, J., & Chen, S. J. (2008). Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. Express Polymer Letters, 2(10), 695-704. http://dx.doi.org/10.3144/expresspolymlett.2008.83
Marković, G., Marinović-Cincović, M., Radovanović, B., & Budinski-Simendić, J. (2007). Rheological and mechanical properties of wood flour filled polyisoprene/chlorosulphonated polyethylene rubber blends. Chemical Industry & Chemical Engineering Quarterly, 13(4), 186-191. http://dx.doi.org/10.2298/CICEQ0704186M
Mostafa, A., Abouel-Kasem, A., Bayoumi, M. R., & El-Sebaie, M. G. (2009). The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature. Materials & Design, 30(3), 791-795. http://dx.doi.org/10.1016/j.matdes.2008.05.065
Rajasekar, R., Pal, K., Heinrich, G., Das, A. & Das, C. K. (2009). Development of nitrile butadiene rubber–nanoclay composites with epoxidized natural rubber as compatibilizer. Materials & Design, 30 (9), 3839-3845. http://dx.doi.org/10.1016/j.matdes.2009.03.014
Rattanasom. N., & Prasertsri, S. (2009). Relationship among mechanical properties, heat ageing resistance, cut growth behaviour and morphology in natural rubber: Partial replacement of clay with various types of carbon black at similar hardness level. Polymer Testing, 28(3), 270-276. http://dx.doi.org/10.1016/j.polymertesting.2008.12.010
Semsarzadeh, M. A., Bakhshandeh, G. R., & Ghasemzadeh-Barvarz, M. (2005). Effect of carbon black on rate constant and activation energy of vulcanization in EPDM/BR and EPDM/NR blends. Iranian Polymer Journal, 14(6), 573-578.
Toth, W. J., Chang J. P., & Zanichelli, C. (1991). Finite element evaluation of the state of cure in a tire. Tire Science and Technology, 19(4), 178-212. http://dx.doi.org/10.2346/1.2141715
Yuan, X., Shen, F., Wu, G., & Wu, C. (2007). Effects of acrylonitrile content on the coordination crosslinking reaction between acrylonitrile–butadiene rubber and copper sulfate. Materials Science and Engineering: A, 459 (1-2), 82-85. http://dx.doi.org/10.1016/j.msea.2007.01.036
Zaimova, D., Bayraktar, E., & Dishovsky, N. (2011). State of cure evaluation by different experimental methods in thick rubber parts. Journal of Achievements in Materials and Manufacturing Engineering, 44(2), 161-167.

Utilization of poly(methyl methacrylate) rejection blended with acrylonitrile butadiene styrene resins and the effect on product properties

Achmad Hanafi Setiawan, Achmad Nandang Roziafanto


Abstract


PMMA is one of the main raw materials for the injection molding process in the lens industries. Since this process requires extremely careful techniques to obtain lens with the best quality, it leads to a high rate of product rejection. These rejected products do not only pose an issue for the industrial environment and require storage space, their price also falls significantly. Among the solutions to this problem is to reuse the rejected products as substitute materials for the manufacture of another product’s part such as lamp holders. This process reuses rejected PMMA-containing products in the ABS base polymer industries so as to generate PMMA-containing products with better physical properties. In this experiment, 10 to 40 % (w/w) of rejected PMMA was blended with ABS resins. The monomer content in the ABS resins was analyzed by NMR. Moreover, the mechanical, thermal, and morphological properties of the blended products were also examined. The NMR analysis showed that the resin contained 21.6 % butadiene monomer, in which its value was higher than the value required for materials with high-impact class application. The blend of resins and rejected PMMA (10-30% w/w) could increase the tensile strength value and decrease Izod impact strength and elongation percentage. The morphological analysis showed that this increased PMMA content may also result in widespread brittle areas. Since the blend was designed without compatibilizers, the DSC analysis indicated that the resulting blend in any ratios was not completely miscible. It was revealed that ABS resins containing 10% PMMA was the best blend for the polymer engineering application and this blend still had adequate properties and elastomer content required.
Keywords: ABS, blending, properties, PMMA regrind.

Full Text:

PDF

References


Al-hydary, I., Manocha, L., & George, P. (2012). Preparation and characterization of PMMA-ABS Blend. The Iraqi Journal of mechanical and material engineering, 12 (4), 709-722.
Alper, N., Sen, S., Atilla, M., & Nugay, N. (2006). Clay PMMA Nanocomposite by Photoinitiated Radical Polymerization Using Intercalated Phenacyl Pyridium Salt Initiators. Macromolecular Chemistry and Physics, 207, 820-836, http://dx.doi.org/10.1002/macp.200500511
BSN (Badan Standardisasi Nasional). (2009). Standard Nasional Indonesia SNI 7398: 2008: Pemantul cahaya (retro-reflektor) kendaraan bermotor, kereta gandengan dan kereta tempelan, Indonesia: BSN.
Buthainadan, I., & Kadum, K. (2010). Influence of Polymer Blending on Mechanical and Thermal Properties. Modern Applied Science Canadian Center of Science and Education, 4 (9).
Gaur, M., Shukla, P., Tiwari, R., & P., S. S. (2008). New Approach for the Measurement of Glass Transition Temperature of Polymer. Indian Journal of Pure and Applied Physics, 46, 535-539.
Kenplas.(2006). Trouble Shooting for Injection Molding Process. http://www.kenplas.com/service/imtroubleshooting.aspx Retrieved: 23rd May 2016
Kuo, C. C., Liu, L. C., Teng, W. F., Chang, H. Y., Chien, F. M., Liao, S. J., Chen, C. M. (2016). Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Composites Part B: Engineering, 86, 36–39, http://dx.doi.org/10.1016/j.compositesb.2015.10.005
Li, W., Schlarbdan, A., & Evstatiev, M. (2009). Effect of Viscosity Ratio on the Morphology of PET Microfibrils in Uncompatibilized and Compatibilized Drawn PET/PP/TiO2 Blends. Journal of Polymer Science: Part B: Polymer Physics, 47, 555-562, http://dx.doi.org/ 10.1002/polb.21658
Oepen, S., & Gottschalk, A. (2011). Styrene copolymers (ABS, ASA, SAN, MABS, and ABS blends). Kunststoffe International, 101(10), 22–26.
Polli, H., Pontes, L. A. M., Araujo, A. S., Barros, J. M. F., & Fernandes, V. J. (2009), Degradation behavior and kinetic study of ABS polymer. Journal of Thermal Analysis and Calorimetry, 95(1),131–134, http://dx.doi.org/10.1007/s10973-006-7781-1
Sankar, V., Kumar, T., & Rao, K. (2004). Preparation, characterisation and fabrication of intraocular lens from photo-initiated polymerized poly (methyl methacrylate). Trends Biomater. Artif. Organs. , 17(2), 24-30.
Tsui, C.-C., Wei, H.-C., Chang, W.-F., & Su, G.-D. J. (2012). Design and fabrication of a mid-wavelength infrared Fresnel lens via liquid poly(methyl methacrylate). Journal of Micromechanics and Microengineering, 22(4), 045010.
Zhou.J.C., Wang, S.H., Lin, S.X, Huang, J., and Xu, L.L. (2014). Effect of compatibilizer on the strength of ABS/PMMA blends. Materials Science and Engineering, 62, 012030

N-pentane resistance and mechanical properties of rubber seal vulcanizate from natural rubber/acrilonitrile-butadiene rubber blend with compatibilizer

Ketahanan n-pentana dan sifat mekanis vulkanisat karet perapat dari campuran karet alam/akrilonitril-butadiena dengan kompatibiliser

Norma Arisanti Kinasih, Muhammad Irfan Fathurrohman


Abstract


The improvement of the compatibility of natural rubber (NR)/acrilonitrile-butadiene rubber (NBR) blend on rubber seal vulcanizate has been done by the addition of chloroprene rubber (CR) or epoxidized natural rubber (ENR) as compatibilizer. Rubber seal compound was made of NR and NBR blend (BN) with CR (BCR), and ENR with epoxy content of 10% (BENR10), 20% (BENR20), 30% (BENR30), 40% (BENR40), and 50% (BENR50). The composition in each formula was homogenized, with comparison of NR:NBR at 40:60, and NR:compatibilizer:NBR at 40:5:55. That compounds were vulcanized with efficient system at 150oC. The addition of CR-compatilizer improved the curing characteristic, compression set, and n-pentane resistance of BN vulcanizate. Meanwhile, the addition of KAE-compatilizer improved the elasticity of BN vulcanizate. BENR elasticity and n-pentane resistance increased in line with the increasing level of epoxy content of ENR.
Keywords: rubber seal, compatibilizer, n-pentane resistance, mechanical properties.

Full Text:

PDF

References


Acharya, H., Kuila, T., Srivastava, S. K., & Bhowmick, A. K. (2008). Effect of layered silicate on EPDM/EVA blend nanocomposite: Dynamic mechanical, thermal, and swelling properties. Polymer Composites, 29(4), 443-450,
http://dx.doi.org/10.1002/pc.20433
Brandrup, J., Immergut, E. H., & Grulke, E. A. (1998). Polymer Handbook. New York, USA: Wiley.
Choi, S., & Ha, S. (2009). Influence of the swelling temperature and acrylonitrile content of NBR on the water swelling behaviors of silica-filled NBR vulcanizates. Journal of Industrial and Engineering Chemistry, 15, 167-170,
http://dx.doi.org/10.1016/j.jiec.2008.09.016
Chonkaew, W., Mingvanish, W., Kungliean, U., Rochanawipart, N., & Brostow, W. (2011). Vulcanization characteristics and dynamic mechanical behavior of natural rubber reinforced with silane modified silica. Journal of Nanoscience and Na-notechnology, 10, 1–7,
http://dx.doi.org/10.1166/jnn.2011.3563
Corish, P. J. (1967). Fundamental studies of rubber blends. Rubber Chemical Technology, 41, 324-340, http://dx.doi.org/10.5254/1.3539049
de Silva, K. G., & Lewan, M. (1998a). Improving the morphology and properties of NR/NBR blends with NR/PMMA graft copolymers. In Tinker, A.J. & Jones, K.P (Eds.), Blends of Natural Rubber: Novel Techniques for Blending with Speciality Polymers (1st ed., pp. 68-78). Chapman & Hall, London: Springer Science+Business Media Dordrecht.
de Silva, K. G., & Lewan, M. (1998b). Improving phase morphology and properties of NR/NBR blends with compatibilizers. Journal of the Rubber Research Institute of Sri Lanka, 81, 38-50
Gelling, I. R. (1991). Epoxidized natural rubber. Journal of Natural Rubber Research, 6(3), 184-205.
Gonzalez, L., Rodrıguez, A., Del Campo, A., & Marcos-Fernandez, A. (2002). Crosslink reaction of natural rubber with thiuram sulphur donors in the presence of a thiuram monosulfide. Journal of Applied Polymer Science, 85, 491-499,
http://dx.doi.org/10.1002/app.10438
Ismail, H., Ahmad, Z., & Mohd, I. Z. A. (2001). Comparison of cetyltrimethyl ammonium maleate and sulphenamide as an accelerator in carbon black filled natural rubber compounds. Polymer Testing, 20, 607-614, http://dx.doi.org/10.1016/S0142-9418(00)00082-9
Ismail, H., Ishak, S., & Hamid, Z. A. A. (2015). Effect of blend ratio on cure characteristics, tensile properties, thermal and swelling properties of mica-filled (ethylene-propylene-diene monomer)/ (recycledethylene-propylene-diene monomer) (EPDM/R-EPDM) blends. Journal of Vinyl & Additive Technology, 21(1), 1-6,
http://dx.doi.org/10.1002/vnl.21369
Ismail, H., Rohani, & Taib, R. M. (2014). Effects of dynamic vulcanization on tensile, morphological, and swelling properties of poly (vinyl chloride) (PVC)/epoxidized naturalrubber (ENR)/(kenaf core powder) composites. Journal of Vinyl & Additive Technology, 1-7,
http://dx.doi.org/10.1002/vnl.21401
Kinasih, N. A., & Fathurrohman, M. I. (2015a). Pe-ngaruh kondisi reaksi terhadap karakteristik ketananan n-pentana pada karet alam epoksi. Manuscript sumbitted for publication.
Kinasih, N. A., Fathurrohman, M. I., & Suparto, D. (2015b). Pengaruh suhu vulkanisasi terhadap sifat mekanis vulkanisat karet alam dan karet akrilonitril-butadiena. Majalah Kulit, Karet, dan Plastik, 31(2), 65-74,
http://dx.doi.org/10.20543/mkkp.v31i2.504
Kinasih, N. A., & Fathurrohman, M. I. (2015c). Effect of curing systems on mechanical properties and n-pentane resistance of carbon black filled natural rubber vulcanizates. Manuscript sumbitted for publication.
Klattanavith, N. (1988). Study of the oil-resistance of natural rubber. Journal of National Research Council of Thailand, 20(2), 1-7.
Kongsin, K., & Lewan, M. (1998). Improving the morphology and properties of NR/NBR blends with polychloroprene as the compatibilizing agent. In Tinker, A.J. & Jones, K.P (Eds.), Blends of Natural Rubber: Novel Techniques for Blending with Speciality Polymers (1st ed., pp. 80-93). Chapman & Hall, London: Springer Science Business Media Dordrecht.
Lawandy, S. N., Botros, S. H. & Mounir, A. (1993). Effect of vulcanizing agent concentration on the swelling behavior of chloroprene rubber under compression strain. Polymer-Plastics Technology and Engineering, 32(3), 223-235,
http://dx.doi.org/10.1080/03602559308019229
Manoj, K. C., Kumari, P., & Unnikrishnan, G. (2011). Cure characteristics, swelling behaviors, and mechanical properties of carbon black filler reinforced EPDM/NBR blend system. Journal of Applied Polymer Science, 120, 2654–2662,
http://dx.doi.org/10.1002/app.33476
Marković, G., Marinović-Cincović, M., Jovanović, V., Samaržija-Jovanović, S., & Budinski-Simendić. (2013). NR/CSM/biogenic silica rubber blend composites. Composites Part B: Engineering, 55, 368-373, http://dx.doi.org/10.1016/j.compositesb.2013.06.045
Mathew, S., Brahmakumar, M., & Abraham, T. E. (2006). Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Biopolymers, 82, 176–187,
http://dx.doi.org/10.1002/bip.20480
Noriman, N. Z., Ismail, H. & Rashid, A. A. (2010). Characterization of styrene butadiene rubber/recycled acrylonitrile-butadiene rubber (SBR/NBRr) blends: The effects of epoxidized natural rubber (ENR-50) as a compatibilizer. Polymer Testing, 29, 200–208, http://dx.doi.org/10.1016/j.polymertesting.2009.11.002
Obasi, H. C., Ognobe, O. & Igwe, I. O. (2009). Diffusion characteristics of toluene into natural rubber/linear low density polyethylene blends. International Journal of Polymer Science, 1-6, http://dx.doi.org/10.1155/2009/140682
Onyeagoro, G. N. (2012). Effect of zinc oxide level and blend ratio on vulcanizate properties of blend of natural rubber and acrylonitrile-butadiene rubber in the presence of epoxidized natural rubber. Academic Research International, 3(1), 499-509.
Palaty, S. & Joseph, R. (2001). Studies on xanthate-zinc diethyl dithiocarbamate accelerator combination in natural rubber. Plastics Rubber and Composites, 30, 270-274,
http://dx.doi.org/10.1179/146580101101541697
Phinyocheep, P., & Boonjairik, K. (2006). Investigation on hydrogenation and epoxidation of natural rubber in latex stage. Proceedings of International Rubber Conference. Lyon, France.
Prakashan, K., Gupta, A. K., & Maiti, S. N. (2007). Effect of compatibilizer on micromechanical deformations and morphology of dispersionin PP/PDMS blend. Journal of Applied Polymer Science, 105, 2858–2867,
http://dx.doi.org/10.1002/app.26510
Rajasekar, R., Pal, K., Heinric, G., Das, A., & Das, C.K. (2009). Development of nitrile butadiene rubber–nanoclay composites with epoxidized natural rubber as compatibilizer. Materials and Design, 30, 3839–3845,
http://dx.doi.org/10.1016/j.matdes.2009.03.014
Ramesan, M. T., Alex, R., & Khanh, N. V. (2005). Studies on the cure and mechanical properties of blends of natural rubber with dichlorocarbene modified styrene–butadiene rubber and chloroprene rubber. Reactive & Functional Polymers, 62, 41–50, http://dx.doi.org/10.1016/j.reactfunctpolym.2004.08.002
Sahakaro, K., Pongpaibon, C., & Nakason, C. (2009). Improved mechanical properties of NR/EPDM blends by controlling the migration of curative and filler via reactive processing technique. Journal of Applied PolymerScience, 111, 2035-2043, http://dx.doi.org/10.1002/app.29193
Setua, D. K. & Gupta, Y. N. (2007). On the use of micro thermal analysis to characterize compatibility of nitrile rubber blends. Thermochimica Acta, 462, 32–37,
http://dx.doi.org/10.1016/j.tca.2007.06.004
Sommer, J. G. (2009). Engineered Rubber Products: Introduction to Design, Manufacture and Testing. Munchen, Jerman: Carl Hanser Verlag,
http://dx.doi.org/10.3139/9783446433441
Tanrattanakul, V., Wattanathai, B., Tiangjunya, A., Muhamud, P. (2003). In situ epoxidized natural rubber: improved oil resistance of natural rubber. Journal of Applied Polymer Science, 90, 261–269, http://dx.doi.org/10.1002/app.12706
Teh, P. L., Ishak, Z. A. M., Hashim, S. Karger-Kocsis, J., & Ishiaku, U.S. (2004). Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubber-organo clay nanocomposites. European Polymer Journal, 40, 2513-2521, http://dx.doi.org/10.1016/j.eurpolymj.2004.06.025
Thomas, S. P., Mathew, E .J. & Marykutty, C.V. (2012). Nano modified fillers in chloroprene-rubber compatibilized natural rubber/acrylonitrile–butadiene rubber blends. Journal of Applied Polymer Science, 124, 4259–4267,
http://dx.doi.org/10.1002/app.12706
Thomas, S. P., Thomas, S, Marykutty, C. V, & Mathew, E. J. (2013). Evaluation of effect of various nanofillers on technological properties of NBR/NR blend vulcanized using BIAT-CBS. Journal of Polymer, 2013, 1-10,
http://dx.doi.org/10.1155/2013/798232
Tosaka, M. (2007). Strain-induced crystallization of crosslinked natural rubber as revealed by X-ray diffraction using synchrotron radiation. Polymer Journal, 39(12), 1207-1220,
http://dx.doi.org/10.1295/polymj.PJ2007059
Vallim, M. R., Araujo, J. R., Spinace´, M. A. S., & De Paoli, M. A. (2009). Polyamide-6/high-density polyethylene blend using recycled high-density polyethylene as compatibilizer: Morphology, mechanical properties, and thermal stability. Polymer Engineering and Science, 49(10), 2005-2014, http://dx.doi.org/10.1002/pen.21439
Van Duin, M., & Dikland, H. (2007). A chemical modification approach for improving the oil resistance of ethylene propylene copolymer. Polymer Degradation and Stability, 92, 2287-2293, http://dx.doi.org/10.1016/j.polymdegradstab.2007.04.018
Varghese, H., Bhagawan, S. S., Rao, S. S., & Thomas, S. (1995). Morphology, mechanical and viscoelastic behaviour of blends of nitrile rubber and ethylene-vinyl acetate copolymer. European Polymer Journal, 31(10), 957-967,
http://dx.doi.org/10.1016/0014-3057(95)00056-9
Varughese, S., & Tripathy, D. K. (1992). Dynamic mechanical properties of epoxidised natural rubber vulcanisates: Effect of curing system and ageing. Polymer Degradation and Stability, 38, 7-14, http://dx.doi.org/10.1016/0141-3910(92)90016-X
Wang, H., Lu, X., & Wang, S. (2014). The swelling properties of nitrile rubber with different acrylonitrile contents in cyclohexane medium research. Advanced Materials Research, 936, 942-1947, http://dx.doi.org/10.4028/www.scientific.net/amr.936.1942
Wu, Y., Yang, Y., Li, B., & Han, Y. (2006). Reactive blending of modified polypropylene and polyamide 12: Effects of compatibilizer content on crystallization and blend morphology. Journal of Applied Polymer Science, 100, 3187–3192,
http://dx.doi.org/10.1002/app.23572
Xie, L., Jiang, M., Dong, X., Bai, X., Tong, J., & Zhou, J. (2012). Controlled mechanical and swelling properties of poly (vinyl alcohol)/sodium alginate blend hydrogels prepared by freeze–thaw followed by Ca2+ crosslinking. Journal of Applied Polymer Science, 124, 823–831,
http://dx.doi.org/10.1002/app.35083
Yahya, R. Y. S, Azura, A. R. & Ahmad, Z. (2011). Effect of curing systems on thermal degradation behaviour of natural rubber (SMR CV 60). Journal of Physical Science, 22(2), 1–14.
Yong, M. K., Ismail, H., & Ariff, Z. M. (2007). The effect of epoxidized natural rubber (ENR-50) or polyethylene acrylic acid (PEA) as compatibilizer on properties of ethylene vinyl acetate (EVA)/natural rubber (SMR L) blends. Polymer-Plastics Technology and Engineering, 46, 1001–1009, http://dx.doi.org/10.1080/03602550701519480
Yu, L., Dean, K., Yuan, Q., Chen, L., & Zhang, X. (2007). Effect of compatibilizer distribution on the blendsof starch/biodegradable polyesters. Journal of Applied Polymer Science, 103, 812–818,
http://dx.doi.org/10.1002/app.25184

Transfer hydrogenation of castrol oil and its implementation as rubber plasticizer

Reaksi transfer hidrogenasi minyak jarak kastor serta aplikasinya sebagai bahan pelunak kompon karet

Santi Puspitasari, Adi Cifriadi, Krisnawati Krisnawati, Tun Tedja Irawadi

Abstract


Rubber plasticizer is used to improve rubber processability so as to shorten time and reduce energy consumption during compounding. In general, rubber plasticizer is nonrenewable and environmentally harmful petroleum derivatives due to the carcinogenic property. Environmentally friendly plasticizer can be produced by transfer hydrogenation of vegetable oil. The research was aimed to synthesize new rubber plasticizer from transfer hydrogenation of castor oil using diimide compound which was generated in situ by oxidation of hydrazine hydrate and hydrogen peroxide as well as the application of the new rubber plasticizer obtained on natural and synthetic rubbers compounding. The result showed that the optimum condition of transfer hydrogenation was achieved at a capacity of 1000 ml oil/batch, 40oC for 5 hours, and ratio hydrazine hydrate to hydrogen peroxide at 1:2 due to the hydrogenated castor oil (HCO) had the highest degree of hydrogenation and neutral pH. The application of 10 phr HCO had significant effect on the compounding of EPDM 6250 which was shown by shortest time and lowest energy of compounding, and also by the highest minimum torque modulus. In addition, the crosslink density of rubber vulcanizate which was formed during accelerated sulfur vulcanization was affected both by the addition of HCO and the saturation of the rubber being used.
Keywords: environmentally friendly plasticizer, castor oil, diimide hydrogenation, rubber.

Full Text:

PDF


DOI: http://dx.doi.org/10.20543/mkkp.v32i2.1361



References


Alexander, M., & Thachil, E. T. (2006). A comparative study of cardanol and aromatic oil as plasticizers for carbon-black-filled natural rubber. Journal of Applied Polymer Science, 102, 4835-4841,
http://dx.doi.org/10.1002/app.24811
Ansarifar, A., Critchlow, G. W., Guo, R., Ellis, R. J., Kirtley, S. P., & Seymour, B. (2007). Effect of rubber chemicals on the surface free energy of NR and NR-SBR rubber blends. Journal Rubber Research, 10(3), 148-160.
Aprem, A. S., Joseph, K., Mathew, T., Altstaedt, V., & Thomas, S. (2003). Studies on accelerated sulphur vulcanization of natural rubber using 1-phenyl-2, 4-dithiobiuret/tertiary butyl benzothiazole sulphenamide. European Polymer Journal, 39, 1451-1460, http://dx.doi.org/10.1016/S0014-3057(02)00382-8
Arayapranee, W., & Rempel, G. L. (2007). Effects of cashew nut shell liquid as a plasticizer on cure characteristic, processability and mechanical properties of 50:50 NR/EPDM blends: A comparison with paraffin oil. Journal of Applied Polymer Science, 106, 1696-2702, http://dx.doi.org/10.1002/app.25936
Ariatmi, N. R., Djumali, M., Ani, S., Machfud, M., & Sudradjat, S. (2010). Optimasi proses dan kinetika reaksi epoksidasi minyak jarak pagar (Jatropa curcas L.) dengan hidrogen peroksida. Jurnal Teknologi Industri Pertanian, 18(2), 66-70.
Azhar, N. H. A., Jamaluddin, N., Rasid, H. M., Yusof, M. J. M., & Yusoff, S. F. M. (2015). Studies on hydrogenation of liquid natural rubber using diimide. International Journal of Polymer Science, 12, 1-6, http://dx.doi.org/10.1155/2015/243038
Cataldo, F., Ursini, O., & Angelini, G. (2013). Biodiesel as a plasticizer of a SBR-based tire tread formulation. ISRN Polymer Science, 1-9, http://dx.doi.org/10.1155/2013/340426
Chandrasekaran, V. C. (2010). Rubber as a construction material for corrosion protection: a comprehensive guide for process equipment. Canada: Scrivener Publishing LLC.
Chen L., Gong, X. L., Jiang, W. Q., Yao, J. J., Deng, H. X., & Li, W. H. (2007). Investigation on magnetorheological elastomers based on natural rubber. Journal of Materials Science., 42(14), 5483-5489, http://dx.doi.org/10.1007/s10853-006-0975-x
Formela, K., Wasowicz, D., Formela, M., Hejna, A., & Haponiuk, J. (2015). Curing characteristics, mechanical and thermal properties of reclaimed ground tire rubber cured with various vulcanizing systems. Iran Polymer Journal, 24, 289-297, http://dx.doi.org/10.1007/s13726-015-0320-9
Gonzales, H. L., Rodriguez, D. A., Valetin, J. L., Marcos-Fernandez, A., & Posadas, P. (2005). Conventional and efficient crosslinking of natural rubber effect of heterogeneities on the physical properties. Elastomer and Plastics, 58(12), 638-643.
Iqbal, M., Akhter, T., Farooqui, Z., & Mahmood, K. (2008). The effects of plasticizer and filler on the curing characteristic and mechanical properties of (SBR) styrene butadiene rubber and (CR) chloroprene rubber blends. Journal Chemical Society of Pakistan, 30(4), 507-511.
Karak, N. (2009). Fundamentals of polymers material to finish products. New Delhi, India: Learning Private Limited.
Khalaf, A. I., Ward, A. A., El-Kader, A. E, & El-Sabbagh, S. H. (2015). Effect of selected vegetable oils on the properties of acrylonitrile-butadiene rubber vulcanizates. Polimery, 60(1), 43-56, http://dx.doi.org/10.14314/polimery.2015.043
Khimi, S. R., & Pickering, K. L. (2014). A new method to predict optimum cure time of rubber compound using dynamic mechanical analysis. Journal of Applied Polymer Science, 131(6), 1-6, http://dx.doi.org/10.1002/app.40008
Kraft, V., Kretzschmar, G.,& Rossen, K. (2011). Process for the production of atermisinin intermediate, US Patent 0230669 A1 tanggal publikasi 22 September 2011, United States.
Lanxess. (2007). Buna EP ethylene propylene rubber the versatile elastomer. Germany: Lanxess.
Lin, X., Pan, Q., & Rempel, G.L. (2004). Cupric ion catalyzed diimide production from the reaction between hydrazine and hidrogen peroxide, Journal of Applied. Catalysis A : General , 263(1), 27-32, Http://dx.doi.org/10.1016/j.apcata.2003.11.035
Lin, X. (2005). Hydrogenation of unsaturated polymers in latex form (Thesis), University of Waterloo, Ontario, Canada.
Liu, K. S. (2009). Effects of particle size distribution, compositional and color properties of ground corn on quality of distillers dried grains with solubles (DDGS). Bioresource Technology, 100(19), 4433-4440. http://dx.doi.org/10.1016/j.biortech.2009.02.067
Mahittikul, A., Prasassarakich, P., & Rempel, G. L. (2007). Diimide hydrogenation of natural rubber latex. Journal of Applied Polymer Science, 105(3), 1188-1199, http://dx.doi.org/10.1002/app.25944
Marin, M. J. G., Garcia, F. P., & Santillan, Y. M. (2012). Obtaining and characterization of biodiesel from castor oil (ricinus communis) and sunflower (helianthus annuus) grown in Tabasco, Mexico. International Journal of Applied Science and Technology, 2(9), 58-74.
Martin, J. G., Ernst, J. L., Jankowski, C. J., & Scheteliclr, A. A. (1962). US Patent No. 3023195 A, Washington, USA: U.S. Patent and Trademark Office.
McKeen, L. W. (2012). Film properties of plastics and elastomers. (3rd ed.). USA: Elsevier Inc.
Oh, J., Yoo, Y. H., Yoo, I. S., Huh, Y.I., Chaki, T. K., & Nah, C (2014). Effect of plasticizer and curing system on freezing resistance of rubbers. Journal of Applied Polymer Science, 131, 1-8, http://dx.doi.org/10.1002/app.39795
Petchkaew, A. (2015). Implication of non carcinogenic PAH-extender oils in natural rubber based tire compounds (Thesis), University of Twente and Prince of Songkla University, Netherland and Thailand.
Puspitasari, S., & Cifriadi, A. (2012). Kajian pembuatan bahan pelunak karet berbasis hayati dari minyak jarak melalui reaksi hidrogenasi.Warta Perkaretan, 31(1), 50-56.
Puspitasari, S., & Cifriadi, A. (2014a). Karakterisasi minyak jarak terhidrogenasi sebagai bahan pelunak karet alami. Jurnal Penelitian Karet, 32(1), 65-73.
Puspitasari, S., & Cifriadi, A. (2014b). Pembuatan bahan pelunak alami untuk kompon karet melalui reaksi hidrogenasi minyak jarak castor. Jurnal Penelitian Karet, 32(1), 56-64.
Rahmaniar, R., Gatot, P., & Basuni, H. (2009). Pembuatan kompon karet dengan penambahan minyak kemiri (candlenut oil) epoksi. Dinamika Penelitian BIPA, 20(35), 59-68.
Rao, R. R., & Prasad, K. R. (2004). Effects of velocity slip and viscosity variation on journal bearings. The ANZIAM Journal, 46(1), 143-155, http://dx.doi.org/10.1017/S1446181100013730
Raju, P., Nandanan, V., & Kutty Sunil, K. N. (2007). A study on the use of coconut oil as plasticiser in natural rubber compounds. Journal Rubber Research, 10(1), 1-16.
Restrepo-Zapata, N. C., Osswald, T. A., & Hernandez-Ortiz, J. P. (2014). Vulcanization of EPDM rubber compounds with and without blowing agents: Identification of reaction events and TTT-diagram using DSC data. Polymer Engineering and Science, 55(9), 2073-2088, http://dx.doi.org/10.1002/pen.24049
Rodgers, B. (2015). Rubber compounding: chemistry and applications, second edition. Florida, USA: CRC Press.
Samarth, N. B., & Mahanwar, P. A. (2015). Modified vegetable oil based additives as future polymeric material – review. Open Journal of Organic Polymer Materials, 5, 1-22, http://dx.doi.org/10.4236/ojopm.2015.51001
Smit, C., Fraaije, M. W., & Minnaard, A. J. (2008). Reduction of carbon-carbon double bonds using organocatalytically generated diimide. Journal of Organic Chemistry, 73(23), 9482-9485, http://dx.doi.org/10.1021/jo801588d
Vieira M. G. A., da Silva, M. A., dos Santos, L.O., & Beppu, M.M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(13), 254-263, http://dx.doi.org/10.1016/j.eurpolymj.2010.12.011
Wang, Z., Peng, Y., Zhang, L., Zhao, Y., Vyzhimov, R., Tan, T., & Fong, H. (2016). Investigation of palm oil as green plasticizer on the processing and mechanical properties of ethylene propylene diene monomer rubber. Industrial & Engineering Chemistry Research, 55(10), 2784-2789, http://dx.doi.org/10.1021/acs.iecr.5b04527
Yousef, E. A. A., Hussain, A. E., & Shoeb, Z. E. (2001). Modification of castor oil by isomerization, halogenation and application of some modified product as plasticizer in nitril rubber formulation. Journal of Scientific and Industrial Research, 60, 383-395.
Zhao, J., Ghebremeskel, G., & Peasely, J. (2001). Properties of EPDM/SBR blends cured with peroxide and sulfur coagent. Elastomer and Plastics, 54, 223-228.

The influence of water repellent agent on morphology and physical properties in the production of eco-friendly upper leather

Pengaruh bahan water repellent terhadap morfologi dan sifat-sifat fisika pada pembuatan kulit atasan sepatu ramah lingkungan

Prayitno Prayitno, Emiliana Kasmudjiastuti, Dona Rahmawati

Abstract


The term of eco-friendly leather can be interpreted as chrome-free tanned leather. Recently, almost 80% of leather is tanned using chrome tanning agent because of the ease in processing and excellence of the physical properties. Nevertheless, people nowadays want an eco-friendly leather product. Vegetable tanning materials can be said as eco-friendly tanning material because their waste degrades easily. One of the weaknesses in the use of vegetable tanning is a high water absorption capability. In this research used a water repellent material that has the properties to suppress the ability of water absorption. The purpose of the research was to determine the effect of water repellent on physical properties and morphology of leather tanned by vegetable tanning materials. Because one of the weaknesses in the vegetable tanning is its high water absorption capability, in this research, water repellent was used and varied by 5; 7.5; 10; 12.5; and 15% . Physical properties obtained were compared with analysis of variance with the significance level of 95%. The water repellent increased from 5% to 15%. The results showed a decrease in water absorption capability from 77.6% to 65.39%, tearing strength from 41.64 to 20.05 kg/cm, tensile strength from 227.10 to 163.53 kg/cm2, and elongation at break from 57.11 to 49.68%, strong swelling and WVA have no significant changes, while for WVP, the maximum use of water repellent at 12.5%. SEM results indicate the presence of a thin layer on the leather fiber that can inhibit the absorption of water.

Keywords: water repellent, upper leather, vegetable tanning, water absorption.

Full Text: 

PDF


DOI: http://dx.doi.org/10.20543/mkkp.v32i2.922


References


Ali, S. B., Haroun, H. E., & Musa, A. E. (2013). Haraz bark powder extract for manufacture of nappa upper leather as alternative retanning agent. Journal of Forest Products & Industries, 2(5), 25–29.
BSN (Badan Standardisasi Nasional). (2009). Standar Nasional Indonesia SNI 4901:2009:Kulit bagian atas alas kaki-kulit nappa. Jakarta, Indonesia: BSN.
Castell, J., Sorolla, S., Jorba, M., & Aribau, J. A. B. (2013). Tara (Caesalpinia spinosa): The sustainable source of tannins for innovative tanning processes. Journal of the American Leather Chemists Association, 108(6), 221–230.
Covington, A. D. (2009). Tanning chemistry: The science of leather. Cambridge, UK: The Royal Society of Chemistry.
Jankauskaite, V., Gulbiniene, A., Jiyembetova, I., Sirvaityte, J., Urbelis, V., & Mickus, K. V. (2014). Comparable evaluation of leather waterproofing behaviour upon hide quality. II. Influence of finishing on leather properties. Materials Science (MEDZIAGOTYRA), 20(2), 165–169. http://dx.doi.org/10.5755/j01.ms.20.2.2339
Koloka, O., & Moreki, J. (2011). Tanning hides and skins using vegetable tanning agents in Hukuntsi sub-district, Botswana. Journal of Agricultural Technology, 7(4), 915–922.
Li, Y., Gao, D. G., & Ma, J. Z. (2011). Synthesis of vinyl polymer /ZnO nano composite and its application in leather tanning agent. Journal Materials Science Forum, 694, 103–107. http://dx.doi.org/10.4028/www.scientific.net/MSF.694.103
Mahdi, H., Palmina, K., Gurshi,A., & Covington, A. D. (2009). Potential of vegetable tanning materials and basic aluminum sulphate in Sudanese leather industry. Journal of Engineering Science and Technology, 4(1), 20–31.
Mazumder, D., Santosh, B., & Pratip, B. (2006). Study on leaching of pollutants from vegetable tanning residue. Journal of Environmental Science & Engineering, 48(3), 225–230.
Musa, A. E., & Aravindhan, B. M. J. R. R. (2011). Henna-aluminum combination tannage: A greener alternative tanning system. Journal of the American Leather Chemists Association, 106, 179–211.
Mutlu, M. M., Crudu, M., Maier, S. S., Deselnicu, D., Albu, L., Gulumser, G., & Tosun, C. C. (2014). Eco-leather: Properties of chromium-free leathers produced with titanium tanning materials obtained from the wastes of the metal industry, 90, 83–90. http://dx.doi.org/10.5053/ekoloji.2014.9110
Nashy, E. H. A., Hussein, A. I., & Essa, M. M. (2010). Retanning agents for chrome tanned leather based on emulsion nano-particles of styrene/butyl acrylate copolymers. New York Science Journal, 3(11), 13–21.
Nasr, A. I., Abdelsalam, M. M., & Azzam, A. H. (2013). Effect of tanning method and region on physical and chemical properties of Barki sheep leather. Egyptian Journal of Sheep and Goat Sciences, 8(1), 123–130.
Ozgunay, H., Colak, S., Mutlu, M. M., & Akyuz, F. (2007). Characterization of leather industry wastes. Polish Journal of Environmental Studies, 16(6), 867–873.
Prayitno, P. (2014). Penelitian Pembuatan Kulit Jaket Ramah Lingkungan menggunakan Bahan Penyamak Nabati. In Prosiding Seminar Nasional Kulit, Karet, dan Plastik ke-3 Yogyakarta, 29 Oktober 2014 (pp. 67–83).
Ramanujam, R. A., Ganesh, R., & Kandasamy, J. (2010). Wastewater treatment technology for tanning industry. Encyclopedia of Life Support Systems (EOLSS), 1–22.
Widari, W., Rambat, R., & Suparti, S. (2013). Pembuatan kulit atasan sepatu bebas krom. Majalah Kulit, Karet, dan Plastik, 29(2), 99–104. http://dx.doi.org/10.20543/mkkp.v29i2.197
Yan, L., Chen, Y., Fan, H., Peng, B., & Shi, B. (2008). A novel nano-SiO 2 tannage for making chrome-free leather. Journal of the Society of Leather Technologists and Chemists, 92(0), 252–257.

The improvement of natural rubber oxidation resistance through 4-aminodiphenylamine chemical bonding

Peningkatan ketahanan oksidasi karet alam melalui pengikatan antioksidan 4-aminodifenilamina secara kimia

Hani Handayani, Dadi R. Maspanger, Cynthia L Radiman

Abstract


Natural rubber is very important in supporting the Indonesian economy from non-oil sector. However, natural rubber is not resistant to oxidation. Various attempts have been made to overcome the weaknesses; one of them is the addition of antioxidants as additives in the manufacture of rubber goods. However, it has the disadvantage of mechanical technique, including antioxidant blooming, resulting in failed products and decrease in antioxidants ability. The aim of this research is to improve the resistance of natural rubber from oxidation through the chemically-bound antioxidant into epoxidized latex. Fresh latex was deproteinized using 0.06 phr papain. Latex was epoxidized using formic acid and hydrogen peroxide at 70°C with stirring speed of 700 rpm for 3 hours. Then the 4-Aminodiphenylamine (4-ADPA) antioxidant was added with three variations mole percent of 4-ADPA between 0.025 to 0.1 mol/100 grams of rubber, and four variations in temperature were applied (between 27-80°C). The results showed that the optimum condition for the binding was at 27°C at a dose of antioxidants as much as 0.1 mol/100 grams of rubber. The analysis of FTIR spectra revealed that the binding of 4-ADPA into the epoxidized latex was as much as 1.93 phr. The Rheometer curve analysis showed that the natural rubber bound 4-ADPA was more resistant to ageing based on the value of R300.

Keywords: latex, antioxidant, epoxidation, 4-ADPA, natural rubber oxidation.

Full Text:

PDF

References


Barra, G. M., Crespo, J. S., Bertolino, J. R., Soldi, V., & Pires, A. T. N. (1999). Maleic anhydride grafting on EPDM: qualitative and quantitative determination. Journal of the Brazilian Chemical Society, 10(1), 31-34, http://dx.doi.org/10.1590/S0103-50531999000100006
Chakraborty, S., Kar, S., Ameta, R., Dasgupta, S., & Mukhopadhyay, R. (2010). Quantitative application of FTIR in rubber. Rubber World: The Technical Service Magazine for The Rubber Industry, 241(4): 33-39.
Deptan. (2016). Basis Data Statistik Pertanian. https://aplikasi.pertanian.go.id/bdsp/hasil_kom.asp. Diakses tanggal 26 September 2016.
Faturrahman, M. I., Handayani, H., & Kuncoro, I. (2011). Pengembangan modifikasi karet alam tahan minyak/pelumas. Laporan akhir Kerjasama Penelitian. Pusat Penelitian Karet, Bogor.
Khang, T. H., & Ariff, Z. M. (2011). Vulcanization kinetics study of natural rubber compounds having different formulation variables. Journal of Thermal Analysis and Calorimetry, 109(3), 1545-1553, http://dx.doi.org/10.1007/s10973-011-1937-3
Klinpituksa, P., Hamad, A., Nakason, C., & Kaesaman, A. (2011). Natural rubber bound-4-aminodiphenylamine antioxidant for rubber formulation improvement. Science Journal Ubon Ratchathani University, 2(1), 66-71.
Phinyocheep, P., Phetphaisit, C. W., Derouet, D., Campistron, I., & Brosse, J. C. (2005). Chemical degradation of epoxidized natural rubber using periodic acid: Preparation of epoxidized liquid natural rubber. Journal of applied polymer science, 95(1), 6-15, http://dx.doi.org/10.1002/app.20812
Phinyocheep, P. & Boonjairaak, K. (2006). Investigation on hydrogenation and epoxidation of natural rubber in latex stage. Department of Chemistry, Faculty of Science, Mahidol University, Bangkok.
Phinyocheep, P. (2014). Chemical modification of natural rubber for improved performance. In S. Kohjiya & Y. Ikeda (Eds.). Chemistry, manufacture and applications of natural rubber (pp. 68-110). Cambridge, United Kingdom: Woodhead Publishing.
Wibowo, T. Y., Rusmandana, B., & Astuti, A. (2014). Degradasi cincin oksiran dari epoksi asam oleat dalam suatu sistem reaksi katalis cair. Jurnal Teknologi Pertanian, 14 (1), 29-34.


DOI: http://dx.doi.org/10.20543/mkkp.v32i2.1473

Vol 10, No 20 (1995)

Syakir Hasyimi, Titik Purwati Widowati, Sri Waskito, Marjiana Marjiana
1-12
Muchtar Lutfie, Meiyanti Meiyanti
13-19
Bambang Oetojo, Muchtar Luthfie, Widari Widari, Widhiati Widhiati, Hasan Basalamah
20-29
Sri Untari, Soediman Sastrodihardjo
30-38
Sri Brataningsih Puji Lestari, Luciawati Sunaryo
39-45
Dwi Wahini Nurhajati, Agustin Suraswati, Pramono Pramono, Supriyadi Supriyadi
46-53
Emiliana Kasmudjiastuti, Murwati Murwati
54-59
Suprapto Suprapto, Sri Nadilah
60-67
Asrilah Asrilah, Siti Rochani
68-77
D Karyadi
78-95
Hadi Musthofa
96-104
Kusumo Retno Winahyu, M Sri Wahyuni
105-112